Add like
Add dislike
Add to saved papers

Membrane bioreactor versus conventional activated sludge system: population dynamics of nitrifiers.

Although membrane bioreactors have attracted increasing attention in recent years, little research has been undertaken on the influence of the membrane separation on the microbial community composition. This paper compares the startup behaviour and the performance of the subsequent eight months of a membrane bioreactor with a conventional activated sludge pilot plant. Both plants were operated in parallel at the same sludge age and treated the same domestic wastewater. The identification of the nitrifying community composition using fluorescent in situ hybridization revealed only minor differences between the two reactors for both ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. Accordingly, both systems exhibited the same maximum nitrification rates. Confocal laser scanning microscopy showed that the aggregates formed by nitrifying bacteria were located mostly in the inner part of the flocs and were overgrown by heterotrophic bacteria. It is concluded that the membrane separation itself does affect neither the nitrifying community composition nor the nitrification performance. However, impacts on kinetic parameters are emphasized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app