Add like
Add dislike
Add to saved papers

Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment.

Aerobic granulation seems to be an a attractive process for COD removal from industrial wastewater, characterised by a high content of soluble organic compounds. In order to evaluate the practical aspects of the process, comparative experimental tests are performed on synthetic and on industrial wastewater, originating from pharmaceutical industry. Two pilot plants are operated as sequencing batch bubble columns. Focus was put on the feasibility of the process for high COD removal and on its operational procedure. For both wastewaters, a rapid formation of aerobic granules is observed along with a high COD removal rate. Granule characteristics are quite similar with respect to the two types of wastewater. It seems that filamentous bacteria are part of the granule structure and that phosphorus precipitation can play an important role in granule formation. For both wastewaters similar removal performances for dissolved biodegradable COD are observed (> 95%). However, a relatively high concentration of suspended solids in the outlet deteriorates the performance with regard to total COD removal. Biomass detachment seems to play a non-negligible role in the current set-up. After a stable operational phase the variation of the pharmaceutical wastewater caused a destabilisation and loss of the granules, despite the control for balanced nutrient supply. The first results with real industrial wastewater demonstrate the feasibility of this innovative process. However, special attention has to be paid to the critical aspects such as granule stability as well as the economic competitiveness, which both will need further investigation and evaluation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app