Add like
Add dislike
Add to saved papers

LPS-induced acute lung injury is attenuated by phosphodiesterase inhibition: effects on proinflammatory mediators, metalloproteinases, NF-kappaB, and ICAM-1 expression.

Journal of Trauma 2006 January
BACKGROUND: Acute endotoxemia is characterized by an enhanced inflammatory response. Pentoxifylline (PTX), a phosphodiesterase inhibitor, has been shown to decrease TNF-alpha levels and to down-regulate neutrophil activation, likely because of increases in intracellular cyclic AMP. Its effects on lipopolysaccharide (LPS) induced lung injury, more specifically on tissue neutrophil infiltration and degranulation, adhesion molecule expression, and transcriptional factor activation, have not been fully investigated. We postulated that PTX treatment in acute endotoxemia downregulates the inflammatory response and may decrease lung injury.

METHODS: Male Sprague-Dawley rats were randomized into three groups: Sham (saline i.v.), LPS (5 mg/kg i.v.), and PTX + LPS (25 mg/kg and 5 mg/kg i.v., respectively; concomitant injection). After 4 hours, bronchoalveolar lavage fluid (BAL), plasma, and lungs were sampled. BAL IL-8 (ELISA), BAL MMP-2, plasma MMP-9, and BAL MMP-9 (Zymography) were measured. Lung histology (H&E), in addition to lung MPO, ICAM-1, and NF-kappaB expression evaluated by immunohistochemistry were analyzed. Lung NF-kappaB DNA binding was evaluated by electrophoretic mobility shift assay.

RESULTS: PTX treatment decreased BAL IL-8 levels, BAL MMP-2, and plasma MMP-9 activity. Lung neutrophil infiltration (MPO), ICAM-1 expression and NF-kappaB activation were decreased by PTX. In addition, PTX treatment caused a marked attenuation of LPS-induced lung injury.

CONCLUSIONS: Phosphodiesterase inhibition by PTX attenuates LPS-induced end-organ injury. In addition, proinflammatory cytokine production is also downregulated, likely because of the marked attenuation of NF-kappaB DNA binding and activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app