COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Relationships between sports-specific characteristics of athlete's heart and maximal oxygen uptake.

BACKGROUND: Improvement to maximal oxygen uptake is mainly due to myocardial adaptations brought about by physical training. As a consequence, the athlete's heart echocardiographic modifications associated with these adaptations are already well-known. We studied the relationships between maximal oxygen uptake (ml/min) and resting echocardiographic patterns in three athlete groups.

METHODS: Tumbling (n=16), canoeing (n=12), cycling (n=12) and untrained (n=19) participants performed clinical examination and an echocardiogram. Trained groups performed a maximal graded exercise test on a cycle ergometer with gas exchange analysis.

RESULTS: Sport-specific cardiac hypertrophy was observed. No significant echocardiographic difference was noted between untrained and tumbling participants. Canoeists showed higher end-diastolic thickness of the interventricular septum (P<0.001) and left ventricle mass (P<0.05) than untrained and higher posterior wall thickness (P<0.001) and than untrained and tumbling participants. In comparison between untrained, tumbling and cycling participants, left ventricular end-diastolic diameter (P<0.001) and left ventricular mass (P<0.001) was higher in cyclists. In trained subjects studied as a global group, the main linear correlation with maximal oxygen uptake concerned left ventricular end-diastolic diameter (r=0.92; P<0.001), left ventricular mass (r=0.60; P<0.001) and to a lesser extent aortic (r=0.39; P<0.01) and left atrium (r=0.36; P<0.05) diameters and E (r=0.38; P<0.05) and A (r=-0.33; P<0.05) Doppler peak velocities. Each trained group showed specific correlations between echocardiographic parameters and absolute maximal oxygen uptake. No further correlation was noted with left ventricular end-diastolic diameter or left ventricle mass when each group was studied individually.

CONCLUSIONS: In athletes, maximal oxygen uptake is partly linked to some resting echocardiographic parameters. Specific relationships between maximal oxygen uptake and some echocardiographic parameters in relation to the sport practised are also observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app