COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Involvement of GABAergic modulation of antinociception induced by morphine microinjected into the ventrolateral orbital cortex.

Brain Research 2006 Februrary 17
Previous studies have shown that microinjection of morphine into the prefrontal ventrolateral orbital cortex (VLO) produces antinociception. The current study examined whether gamma-aminobutyric acid (GABA) containing neurons in the VLO were involved in this antinociception. Under light anesthesia, the GABA(A) receptor antagonist bicuculline and picrotoxin or agonist muscimol and THIP was microinjected into the VLO in non-morphine-treated (control) and morphine-treated (microinjection into the VLO) rats. Noxious heat-evoked tail flick (TF) latencies (TFLs) were measured in all of these groups of rats every 5 min. Bicuculline or picrotoxin (100, 200, 500 ng in 0.5 microl) depressed the TF reflex in a dose-related fashion. A smaller dose (100 ng) of bicuculline or picrotoxin microinjected into VLO significantly enhanced the VLO morphine-evoked inhibition of the TF reflex. In contrast, administration of muscimol (250 ng) or THIP (1.0 microg) significantly attenuated the morphine-induced antinociception in the VLO morphine-treated rats. These results suggest that the GABA(A) receptor is involved in the modulation of VLO morphine-induced antinociception, and provide a behavioral support for the hypothesis that morphine may directly inhibit the GABAergic inhibitory interneurons leading to indirect activation of the descending antinociceptive pathway through a disinhibitory effect on the VLO output neurons and depression of the nociceptive inputs at the spinal cord level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app