Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low circulating regulatory T-cell levels after acute rejection in liver transplantation.

Liver Transplantation 2006 Februrary
Immune regulatory CD4+CD25+ T cells play a crucial role in inducing and maintaining allograft tolerance in experimental models of transplantation (Tx). In humans, the effect of Tx and immunosuppression on the function and homeostasis of CD4+CD25+ regulatory T cells (Tregs) is not well characterized. In this study, the frequency of Tregs in liver transplant recipients was determined based on flow cytometric analysis of CD4, CD25, CD45RO, and cytotoxic T lymphocyte antigen (CTLA)-4 markers, and the suppressor activity of Tregs was assessed in a mixed-leukocyte reaction. A link between Tregs, acute rejection, and immune-suppressive treatment was investigated. Liver transplant recipients had significantly higher Treg levels in peripheral blood pre-Tx than healthy controls. After Tx, a significant drop in the Treg fraction was observed. This reduction of circulating Tregs was transient and was associated with immunosuppression. In recipients who did not develop rejection, a relative recovery of Treg levels was seen within the first year after Tx. Recipients who experienced an episode of steroid-treated acute rejection, however, had sustained low Treg levels. The suppressive activities of CD4+CD25+ Tregs from rejectors, nonrejectors, and healthy controls on proliferation and interferon (IFN)-gamma production were indistinguishable. In conclusion, the percentage of CD4+CD25+CD45RO+CTLA-4+ quadruple-positive Tregs in peripheral blood decreases significantly after liver Tx. Treatment with methylprednisolone during Tx and for acute rejection is associated with low circulating Tregs. Despite these quantitative differences between rejectors and nonrejectors, the suppressive quality of CD4+CD25+ Tregs is identical in both groups.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app