COMPARATIVE STUDY
JOURNAL ARTICLE

Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes

Patrick A Lester, John R Traynor
Brain Research 2006 February 16, 1073-1074: 290-6
16443205
Morphine and related opioid agonists are frequently used in dogs for their analgesic properties, their sedative effects and as adjuncts to anesthesia. Such compounds may be effective through a combined action at mu-, delta- and kappa-opioid receptors. In this work, the in vitro relative agonist efficacy of ligands selective for mu (DAMGO)-, delta (SNC80)- and kappa (U69593)-opioid receptors as well as the opioid receptor-like receptor ORL(1) (orphaninFQ/nociceptin) which may mediate nociceptive or antinociceptive actions was determined using the [35S]GTPgammaS binding assay in membrane homogenates from the frontal cortex, thalamus and spinal cord of beagle dogs. In addition, other analgesics commonly used in the dog were investigated. For the receptor-selective compounds, maximum stimulation of [35S]GTPgammaS binding decreased in the order kappa > ORL1 > delta > mu in cortical homogenates, compared with mu > ORL1 > kappa > delta in thalamic and spinal cord homogenates. For other opioids examined, efficacy decreased in the order etorphine > morphine > fentanyl = oxymorphine > butorphanol = oxycodone = nalbuphine. There was no significant difference in the potency of compounds to stimulate [35S]GTPgammaS binding between cortex and thalamus, with the exception of etorphine. Buprenorphine, the partial mu-opioid receptor agonist and kappa-, delta-opioid receptor antagonist, which does have analgesic efficacy in the dog, showed no agonism in any tissue but was an effective mu-opioid receptor > ORL1 receptor antagonist. The results show that the ability of agonists to stimulate [35S]GTPgammaS binding relates to the receptor distribution of opioid and ORL1 receptors in the dog.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16443205
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"