COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability.

Monocyte chemoattractant protein-1 (MCP-1 or CCL2) regulates blood-brain barrier permeability by inducing morphological and biochemical alterations in the tight junction (TJ) complex between brain endothelial cells. The present study used cultured brain endothelial cells to examine the signaling networks involved in the redistribution of TJ proteins (occludin, ZO-1, ZO-2, claudin-5) by CCL2. The CCL2-induced alterations in the brain endothelial barrier were associated with de novo Ser/Thr phosphorylation of occludin, ZO-1, ZO-2, and claudin-5. The phosphorylated TJ proteins were redistributed/localized in Triton X-100-soluble as well as Triton X-100-insoluble cell fractions. Two protein kinase C (PKC) isoforms, PKCalpha and PKCzeta, had a significant impact on this event. Inhibition of their activity using dominant negative mutants PKCalpha-DN and PKCzeta-DN diminished CCL2 effects on brain endothelial permeability. Previous data indicate that Rho/Rho kinase signaling is involved in CCL2 regulation of brain endothelial permeability. The interactions between the PKC and Rho/Rho kinase pathways were therefore examined. Rho, PKCalpha, and PKCzeta activities were knocked down using dominant negative mutants (T17Rho, PKCalpha-DN, and PKCzeta-DN, respectively). PKCalpha and Rho, but not PKCzeta and Rho, interacted at the level of Rho, with PKCalpha being a downstream target for Rho. Double transfection experiments using dominant negative mutants confirmed that this interaction is critical for CCL2-induced redistribution of TJ proteins. Collectively these data suggest for the first time that CCL2 induces brain endothelial hyperpermeability via Rho/PKCalpha signal pathway interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app