Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

Changes in axial stiffness of the trunk as a function of walking speed.

Research suggests that abnormal coordination patterns between the thorax and pelvis in the transverse plane observed in patients with Parkinson's disease and the elderly might be due to alteration in axial trunk stiffness. The purpose of this study was to develop a tool to estimate axial trunk stiffness during walking and to investigate its functional role. Fourteen healthy young subjects participated in this study. They were instructed to walk on the treadmill and kinematic data was collected by 3D motion analysis system. Axial trunk stiffness was estimated from the angular displacement between trunk segments and the amount of torque around vertical axis of rotation. The torque due to arm swing cancelled out the torque due to the axial trunk stiffness during walking and the thoracic rotation was of low amplitude independent of changes in walking speeds within the range used in this study (0.85-1.52 m/s). Estimated axial trunk stiffness increased with increasing walking speed. Functionally, the suppression of axial rotation of thorax may have a positive influence on head stability as well as allowing recoil between trunk segments. Furthermore, the increased stiffness at increased walking speed would facilitate the higher frequency rotation of the trunk in the transverse plane required at the higher walking speeds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app