COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins.

Chronic metabolic acidosis results in renal Ca2+ and Mg2+ wasting, whereas chronic metabolic alkalosis is known to exert the reverse effects. It was hypothesized that these adaptations are mediated at least in part by the renal Ca2+ and Mg2+ transport proteins. The aim of this study, therefore, was to determine the effect of systemic acid-base status on renal expression of the epithelial Ca2+ channel TRPV5, the Ca2+-binding protein calbindin-D28K, and the epithelial Mg2+ channel TRPM6 in relation to Ca2+ and Mg2+ excretion. Chronic metabolic acidosis that was induced by NH4Cl loading or administration of the carbonic anhydrase inhibitor acetazolamide for 6 d enhanced calciuresis accompanied by decreased renal TRPV5 and calbindin-D28K mRNA and protein abundance in wild-type mice. In contrast, metabolic acidosis did not affect Ca2+ excretion in TRPV5 knockout (TRPV5-/-) mice, in which active Ca2+ reabsorption is effectively abolished. This demonstrates that downregulation of renal Ca2+ transport proteins is responsible for the hypercalciuria. Conversely, chronic metabolic alkalosis that was induced by NaHCO3 administration for 6 d increased the expression of Ca2+ transport proteins accompanied by diminished urine Ca2+ excretion in wild-type mice. However, this Ca2+-sparing action persisted in TRPV5-/- mice, suggesting that additional mechanisms apart from upregulation of active Ca2+ transport contribute to the hypocalciuria. Furthermore, chronic metabolic acidosis decreased renal TRPM6 expression, increased Mg2+ excretion, and decreased serum Mg2+ concentration, whereas chronic metabolic alkalosis resulted in the exact opposite effects. In conclusion, these data suggest that regulation of Ca2+ and Mg2+ transport proteins contributes importantly to the effects of acid-base status on renal divalent handling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app