COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prenatal stress: opposite effects on anxiety and hypothalamic expression of vasopressin and corticotropin-releasing hormone in rats selectively bred for high and low anxiety.

We studied the mechanisms of genetic-early environmental interactions to modulate adult stress-coping and tested the hypothesis that prenatal stress (PS) can differentially alter the consequences of a genetic predisposition to either hyper- or hypo-anxiety. Exposure of male Wistar rats, bred for high (HAB) or low (LAB) anxiety-related behaviour, to PS between pregnancy days 4 and 18 resulted in opposite effects on anxiety in adulthood, i.e. HAB rats became less and LAB rats became more anxious compared with their unstressed controls (plus-maze and holeboard). The high anxiety of HAB controls was accompanied by elevated expression of vasopressin and corticotropin-releasing hormone (CRH) mRNA within the hypothalamic paraventricular nucleus compared with LAB rats. PS reduced CRH mRNA expression in HAB rats but increased vasopressin mRNA expression in LAB rats, which may explain the opposite effects of PS on adult emotionality. Differential effects of PS were also found with respect to hypothalamo-pituitary-adrenal axis reactivity; the hypothalamo-pituitary-adrenal hyper-response in virgin female HAB controls became attenuated after PS, without affecting plasma corticosterone concentrations in LAB rats. Differences in maternal plasma corticosterone measured between pregnancy days 6 and 14 of HAB and LAB dams or differential effects of PS on maternal behaviour can be excluded. In conclusion, exposure of rats with genetically determined high or low emotionality to PS mitigates the extremes in behavioural and neuroendocrine stress-coping, thus allowing adequate and similar behavioural responses to potentially dangerous stimuli in adulthood. Differential effects of PS on the activity of the brain vasopressin and CRH systems might represent possible underlying molecular mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app