Add like
Add dislike
Add to saved papers

Stoichiometry of the murine gammadelta T cell receptor.

The T cell receptor for antigen (TCR) complex is organized into two functional domains: the antigen-binding clonotypic heterodimer and the signal-transducing invariant CD3 and TCRzeta chains. In most vertebrates, there are two different clonotypic heterodimers (TCRalphabeta and TCRgammadelta) that define the alphabeta and gammadelta T cell lineages, respectively. alphabeta- and gammadeltaTCRs also differ in their invariant chain subunit composition, in that alphabetaTCRs contain CD3gammaepsilon and CD3deltaepsilon dimers, whereas gammadeltaTCRs contain only CD3gammaepsilon dimers. This difference in subunit composition of the alphabeta- and gammadeltaTCRs raises the question of whether the stoichiometries of these receptor complexes are different. As the stoichiometry of the murine gammadeltaTCR has not been previously investigated, we used two quantitative immunofluorescent approaches to determine the valency of TCRgammadelta heterodimers and CD3gammaepsilon dimers in surface murine gammadeltaTCR complexes. Our results support a model of murine gammadeltaTCR stoichiometry in which there are two CD3gammaepsilon dimers for every TCRgammadelta heterodimer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app