CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mild Nijmegen breakage syndrome phenotype due to alternative splicing.

Hypomorphic mutations of the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), characterized by microcephaly, chromosomal instability, radiosensitivity, immunodeficiency and high cancer predisposition. Over 90% of NBS patients are homozygous for the 657Delta5 mutation and are of Slavic origin; however, 10 further truncating mutations have been identified in patients of other ethnic origin. Partially functional proteins produced by alternative initiation of translation, and possibly diminishing the severity of the NBS phenotype, have been described for several NBS1 mutations. Here, we report a 53-year-old NBS patient, homozygous for the NBS1 mutation, 742insGG, in exon 7 and who presents with a particularly mild phenotype. In an attempt to find a potential molecular explanation for the mild phenotype observed, we carried out a conventional semi-quantitative and quantitative RT-PCR analyses which revealed two transcripts of almost equal amounts in the patient and her parents--the expected full-length transcript carrying the 742insGG mutation and a second transcript with deleted exons 6 and 7. The transcript was also observed in controls and other NBS patients, however, at quantities more than 100-fold lower than that in the patient described here. Because the skipping of exons 6 and 7 results in an internal in-frame deletion, which eliminates the truncating GG-insertion, we propose that this transcript may code for a partially functional protein of approximately 70 kDa that could be responsible for the unusually mild NBS phenotype observed in this patient. Indeed, complementation analysis of null-mutant mouse cells indicates that the alternatively spliced mRNA codes for a protein with significant functional capacity.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app