JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation.

PURPOSE: To analyze the radiation-induced levels of gammaH2AX and its decay kinetics in 10 human cell lines covering a wide range of cellular radiosensitivity (SF2, 0.06-0.63).

METHODS AND MATERIALS: Five tumor cell lines included Colo-800 melanoma, two glioblastoma (MO59J and MO59K), fibrosarcoma HT 1080, and breast carcinoma MCF7. Five primary skin fibroblasts lines included two normal strains, an ataxia telangiectasia strain, and two fibroblast strains from breast cancer patients with an adverse early skin reaction to radiotherapy. Cellular radiosensitivity was assessed by colony-forming test. Deoxyribonucleic acid damage and repair were analyzed according to nuclear gammaH2AX foci intensity, with digital image analysis.

RESULTS: The cell lines tested showed a wide degree of variation in the background intensity of immunostained nuclear histone gammaH2AX, which was higher for the tumor cell lines compared with the fibroblast strains. It was not possible to predict clonogenic cell survival (SF2) for the 10 cell lines studied from the radiation-induced gammaH2AX intensity. In addition, the slopes of the dose-response (0-4 Gy) curves, the rates of gammaH2AX disappearance, and its residual expression (
CONCLUSIONS: The results from 10 cell lines showed that measurements of immunofluorescence intensity by digital image analysis of phosphorylated histone H2AX as a surrogate marker of DNA double-strand breaks did not allow reliable ranking of cell strains according to their clonogenic survival after irradiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app