JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Differential modulation of host plant delta13C and delta18O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment.

Native, drought-adapted arbuscular mycorrhizal fungi (AMF) often improve host-plant performance to a greater extent than nonnative AMF in dry environments. However, little is known about the physiological basis for this differential plant response. Seedlings of Olea europaea and Rhamnus lycioides were inoculated with either a mixture of eight native Glomus species or with the nonnative Glomus claroideum before field transplanting in a semiarid area. Inoculation with native AMF produced the greatest improvement in nutrient and water status as well as in long-term growth for both Olea and Rhamnus. Foliar delta18O measurements indicated that native AMF enhanced stomatal conductance to a greater extent than nonnative AMF in Olea and Rhamnus.delta13C data showed that intrinsic water-use efficiency in Olea was differentially stimulated by native AMF compared with nonnative AMF. Our results suggest that modulation of leaf gas exchange by native, drought-adapted AMF is critical to the long-term performance of host plants in semiarid environments. delta18O can provide a time-integrated measure of the effect of mycorrhizal infection on host-plant water relations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app