COMPARATIVE STUDY
JOURNAL ARTICLE
MULTICENTER STUDY
Add like
Add dislike
Add to saved papers

In vitro activity of tigecycline, a new glycylcycline, tested against 1,326 clinical bacterial strains isolated from Latin America.

UNLABELLED: The in vitro activity of tigecycline (former GAR-936), a new semisynthetic tetracycline, was evaluated in comparison with tetracycline and other antimicrobial agents.

MATERIAL AND METHODS: A total of 1,326 contemporary clinical isolates collected from the Latin American region were collected in 2000-2002 period and tested with microdilution broth according to the CLSI guidelines. The bacterial pathogens evaluated included Staphylococcus aureus (505), Streptococcus pneumoniae (269), coagulase-negative staphylococci (CoNS; 227), Haemophilus influenzae (129), Enterococcus spp. (80), Moraxella catarrhalis (54), beta-haemolytic streptococci (28), viridans group streptococci (26), and Neisseria meningitidis (8)

RESULTS: Tigecycline demonstrated excellent activity against all Gram-positive cocci, with 90% of penicillin-resistant S. pneumoniae strains being inhibited at 0.12 microg/mL, while the same isolates had an MIC90 of > 16 microg/mL for tetracycline. All Enterococcus spp. were inhibited at 0.25 microg/mL of tigecycline. Tigecycline (MIC50, 0.25 microg/mL) was eight-fold more potent than minocycline (MIC50, 2 microg/mL) against oxacillin-resistant S. aureus (ORSA); all ORSA were inhibited at < 2 microg/mL of tigecycline. Tigecycline demonstrated excellent activity (MIC50, 0.5 microg/mL) against CoNS with reduced susceptibility to teicoplanin (MIC, 16 microg/mL). Tigecycline also showed high potency against respiratory pathogens such as M. catarrhalis (MIC50, 0.12 microg/mL) and H. influenzae (MIC50, 0.5 microg/mL). No tigecycline resistant isolates were detected when the proposed susceptible breakpoints (< 4 microg/mL) was applied.

CONCLUSIONS: This results indicate that tigecycline has potent in vitro activity against clinically important pathogenic bacteria, including Gram-positive isolates resistant to both tetracycline and minocycline.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app