JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Fatigue, sleepiness, and performance in simulated versus real driving conditions.

Sleep 2005 December
STUDY OBJECTIVES: To determine whether real-life driving would produce different effects from those obtained in a driving simulator on fatigue, performances and sleepiness.

DESIGN: Cross-over study involving real driving (1200 km) or simulated driving after controlled habitual sleep (8 hours) or restricted sleep (2 hours).

SETTING: Sleep laboratory and open French Highway.

PARTICIPANTS: Twelve healthy men (mean age +/- SD = 21.1 +/- 1.6 years, range 19-24 years, mean yearly driving distance +/- SD = 6563 +/- 1950 miles) free of sleep disorders.

MEASUREMENTS: Self-rated fatigue and sleepiness, simple reaction time before and after each session, number of inappropriate line crossings from the driving simulator and from video-recordings of real driving.

RESULTS: Line crossings were more frequent in the driving simulator than in real driving (P < .001) and were increased by sleep deprivation in both conditions. Reaction times (10% slowest) were slower during simulated driving (P = .004) and sleep deprivation (P = .004). Subjects had higher sleepiness scores in the driving simulator (P = .016) and in the sleep restricted condition (P = .001). Fatigue increased over time (P = .011) and with sleep deprivation (P = .000) but was similar in both driving conditions.

CONCLUSIONS: Fatigue can be equally studied in real and simulated environments but reaction time and self-evaluation of sleepiness are more affected in a simulated environment. Real driving and driving simulators are comparable for measuring line crossings but the effects are of higher amplitude in the simulated condition. Driving simulator may need to be calibrated against real driving in various condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app