Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment.

Nucleus pulposus (NP) cells of the intervertebral disc reside in an environment that has a limited vascular supply and generate energy through anaerobic glycolysis. The goal of the present study was to examine the expression and regulation of HIF-1alpha, a transcription factor that regulates oxidative metabolism in nucleus pulposus cells. Nucleus pulposus cells were isolated from rat, human, and sheep disc and maintained at either 21% or 2% oxygen for various time periods. Cells were also treated with desferrioxamine (Dfx), a compound that mimics the effects of hypoxia (Hx). Expression and function of HIF-1alpha were assessed by immunofluorescence microscopy, Western blot analysis, gel shift assays, and luciferase reporter assays. In normoxia (Nx), rat, sheep, and human nucleus pulposus cells consistently expressed the HIF-1alpha subunit. Unlike other skeletal cells, when maintained under low oxygen tension, the nucleus pulposus cells exhibited a minimal induction in HIF-1alpha protein levels. Electromobility shift assays confirmed the functional binding of normoxic HIF-1alpha protein to its putative DNA binding motif. A dual luciferase reporter assay showed increased HIF-1alpha transcriptional activity under hypoxia compared to normoxic level, although this induction was small when compared to HeLa and other cell types. These results indicate that normoxic stabilization of HIF-1alpha is a metabolic adaptation of nucleus pulposus cells to a unique oxygen-limited microenvironment. The study confirmed that HIF-1alpha can be used as a phenotypic marker of nucleus pulposus cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app