JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Integrating modelling and experiments to assess dynamic musculoskeletal function in humans.

Magnetic resonance imaging, bi-plane X-ray fluoroscopy and biomechanical modelling are enabling technologies for the non-invasive evaluation of muscle, ligament and joint function during dynamic activity. This paper reviews these various technologies in the context of their application to the study of human movement. We describe how three-dimensional, subject-specific computer models of the muscles, ligaments, cartilage and bones can be developed from high-resolution magnetic resonance images; how X-ray fluoroscopy can be used to measure the relative movements of the bones at a joint in three dimensions with submillimetre accuracy; how complex 3-D dynamic simulations of movement can be performed using new computational methods based on non-linear control theory; and how musculoskeletal forces derived from such simulations can be used as inputs to elaborate finite-element models of a joint to calculate contact stress distributions on a subject-specific basis. A hierarchical modelling approach is highlighted that links rigid-body models of limb segments with detailed finite-element models of the joints. A framework is proposed that integrates subject-specific musculoskeletal computer models with highly accurate in vivo experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app