JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling.

Human Molecular Genetics 2006 Februrary 16
NF-kappaB essential modulator (NEMO), the regulatory subunit of the IkappaB kinase, is essential for NF-kappaB activation. Mutations disrupting the X-linked NEMO gene cause incontinentia pigmenti (IP), a human genetic disease characterized by male embryonic lethality and by a complex pathology affecting primarily the skin in heterozygous females. The cellular and molecular mechanisms leading to skin lesion pathogenesis in IP patients remain elusive. Here we used epidermis-specific deletion of NEMO in mice to investigate the mechanisms causing the skin pathology in IP. NEMO deletion completely inhibited NF-kappaB activation and sensitized keratinocytes to tumor necrosis factor (TNF)-induced death but did not affect epidermal development. Keratinocyte-restricted NEMO deletion, either constitutive or induced in adult skin, caused inflammatory skin lesions, identifying the NEMO-deficient keratinocyte as the initiating cell type that triggers the skin pathology in IP. Furthermore, genetic ablation of tumor necrosis factor receptor 1 (TNFRI) rescued the skin phenotype demonstrating that TNF signaling is essential for skin lesion pathogenesis in IP. These results identify the NEMO-deficient keratinocyte as a potent initiator of skin inflammation and provide novel insights into the mechanism leading to the pathogenesis of IP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app