JOURNAL ARTICLE

Effect of self-interaction error in the evaluation of the bond length alternation in trans-polyacetylene using density-functional theory

I Ciofini, C Adamo, H Chermette
Journal of Chemical Physics 2005 September 22, 123 (12): 121102
16397946
The calculation of the bond-length alternation (BLA) in trans-polyacetylene has been chosen as benchmark to emphasize the effect of the self-interaction error within density-functional theory (DFT). In particular, the BLA of increasingly long acetylene oligomers has been computed using the Møller-Plesset wave-function method truncated at the second order and several DFT models. While local-density approximation (LDA) or generalized gradient corrected (GGA) functionals strongly underestimate the BLA, approaches including self-interaction corrections (SIC) provide significant improvements. Indeed, the simple averaged-density SIC scheme (ADSIC), recently proposed by Legrand et al. [J. Phys. B 35, 1115 (2002)], provides better results for the structure of large oligomers than the more complex approach of Krieger et al. [Phys. Rev. A 45, 101 (1992)]. The ADSIC method is particularly promising since both the exchange-correlation energy and potential are improved with respect to standard LDA/GGA using a physically appealing correction, through a different route than the more popular approach through the Hartree-Fock exchange inclusion within the hybrid functionals.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16397946
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"