Add like
Add dislike
Add to saved papers

Influence of C-peptide on early glomerular changes in diabetic mice.

BACKGROUND: C-peptide has been shown to ameliorate diabetes-induced functional and structural renal changes in animal models as well as in patients with type 1 diabetes. This study aims to examine the molecular effects of C-peptide on early glomerular changes in a mouse model of type 1 diabetes.

METHODS: Fourteen days after induction of diabetes by streptozotocin (STZ), the animals received rat C-peptide for either 24 h or 7 days. Urinary albumin excretion was measured by ELISA. Glomerular mRNA expression of the transforming growth factor (TGF)-beta(1) and type IV collagen was quantified by real-time PCR. The effect of C-peptide on type IV collagen gene expression in cultured murine podocytes was also examined.

RESULTS: C-peptide decreased urinary albumin excretion from 0.29 to 0.18 microg/min (-40.7%, P < 0.01). The transcript level of (alpha3)IV collagen in glomeruli was up-regulated 2.2-fold in diabetic mice and was inhibited by 45-70% (P < 0.05) upon C-peptide treatment. C-peptide suppressed glomerular expression of TGF-beta(1) by 36.6% after 7 days (P < 0.05) but not 24 h after injection. In vitro studies using cultured podocytes revealed that C-peptide dose-dependently inhibited TGF-beta-induced up-regulation of type IV collagen. Moreover, both pertussis toxin (PTX) and a specific inhibitor for extracellular signal-regulated kinase (ERK) pathway reversed the inhibitory effect of C-peptide on TGF-beta. Finally, C-peptide was shown to up-regulate the activity of ERK in podocytes.

CONCLUSIONS: These findings indicate that C-peptide suppresses specific aspects of early glomerular changes in a mouse model of diabetes and that the effect is at least in part mediated via interaction with the TGF-beta signal in glomerular podocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app