JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72.

Heat shock proteins (Hsp) were first characterized as intracellular proteins, which function to limit protein aggregation, facilitate protein refolding, and chaperone proteins. During times of cellular stress, intracellular Hsp levels increase to provide cellular protection. Recently, it has been recognized that Hsp, particularly Hsp72, are also found extracellularly (eHsp72), where they exhibit potent immunomodulatory effects on innate and acquired immunity. Circulating eHsp72 levels also greatly increase during times of stress (i.e., when an organism is exposed to a physical/psychological stressor or suffers from various pathological conditions). It has been proposed that elevated eHsp72 serves a protective role by facilitating immunological responses during times of increased risk of pathogenic challenge and/or tissue damage. This review focuses on the in vivo releasing signals and immunomodulatory function(s) of endogenous eHsp72. In addition, we present data that emphasize the importance of caution when conducting in vitro immunological tests of Hsp72 function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app