English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Influence of different thawing temperature on the morphology and type I collagen metabolism of the human fibroblasts processed at - 10 degrees C in vitro].

OBJECTIVE: To explore the influence of different thawing temperatures on the morphology and type I collagen metabolism of the human fibroblasts processed at - 10 degrees C in vitro.

METHODS: In vitro cultured human fibroblasts were randomly divided into control, 20 degrees C thawing, and 37 degrees C thawing groups. After being frozen at -10 degrees C, the cells in the latter two groups were thawed at 20 degrees C and 37 degrees C, respectively. The cell proliferation was assessed with MTT method and was expressed by absorption under 570nm (A ), The morphological change of the cells was observed with inverted phase contrast microscope, the change in the intracellular content of collagen was determined with immunohistochemistry, and the extracellular content of collagen was assayed with ELISA.

RESULTS: In 20 degrees C thawing group, the absorbance decreased at first and increased thereafter, and they were obviously lower than that before freezing (0.95 +/- 0.16, P < 0.05 or 0.01). Cell dehydration and shrinking, cytoplasm loss and increased ratio of cytoplasm to nucleus were found in the survived fibroblasts. The cells proliferated actively at 72 and 96 hours after injury, with increased mitotic index and disordered arrangement. Compared with that before freezing (96.4 +/- 2.9) , the extracellular collagen content increased at first, decreased thereafter, and increased again slowly later (P < 0.05), while the intracellular collagen content decreased at first and increased thereafter (P < 0.05). The collagen metabolism in 37 degrees C thawing group was no difference compared with that in control group. Some cells undergone a floating period before adhering to the culture dish walls.

CONCLUSION: Cell dehydration after low temperature treatment could protect the cells from damage. Proper thawing temperature could be beneficial to the cell resuscitation. Comparing with slow thawing, rapid thawing could minimize the cell damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app