REVIEW
The role of tuberin in cellular differentiation: are B-Raf and MAPK involved?
Annals of the New York Academy of Sciences 2005 November
Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome whose manifestations can include seizures, mental retardation, autism, and tumors in the brain, retina, kidney, heart, and skin. The products of the TSC1 and TSC2 genes, hamartin and tuberin, respectively, heterodimerize and inhibit the mammalian target of rapamycin (mTOR). This review focuses on the genetic and biochemical basis of the renal and pulmonary manifestations of TSC, angiomyolipomas, and lymphangiomyomatosis, respectively. Genetic analyses of sporadic angiomyolipomas revealed that all three components (smooth muscle, vessels, and fat) derive from a common progenitor cell, indicating the ability of cells lacking tuberin to differentiate into multiple lineages. Other genetic studies showed that the benign smooth muscle cells of pulmonary lymphangiomyomatosis have the ability to migrate to other organs. These findings suggest that tuberin and hamartin play a role in the regulation of cellular migration and differentiation. We have found that tuberin activates B-Raf kinase and p42/44 MAPK and that cells lacking tuberin have low levels of B-Raf activity. We hypothesize that aberrant B-Raf activity in angiomyolipomas leads to abnormal cellular differentiation and migration.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app