Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

A Process Analytical Technology approach to near-infrared process control of pharmaceutical powder blending. Part I: D-optimal design for characterization of powder mixing and preliminary spectral data evaluation.

Experimental design, multivariate data acquisition, and analysis in addition to real time monitoring and control through process analyzers, represent an integrated approach for implementation of Process Analytical Technology (PAT) in the pharmaceutical industry. This study, which is the first in a series of three parts, uses an experimental design approach to identify critical factors affecting powder blending. Powder mixtures composed of salicylic acid and lactose were mixed in an 8 qt. V-blender. D-optimal design was employed to characterize the blending process, by studying the effect of humidity, component concentration, and blender speed on mixing end point. Additionally, changes in particle size and density of powder mixtures were examined. A near-infrared (NIR) fiber-optic probe was used to monitor mixing, through multiple optical ports on the blender. Humidity, component concentration, and blender speed were shown to have a significant impact on the blending process. Furthermore, humidity and concentration had a significant effect on particle size and density of powder mixtures. NIRS was sensitive to changes in physicochemical properties of the mixtures, resulting from process variables. Proper selection of NIR spectral preprocessing is of ultimate importance for successful implementation of this technology in the monitoring and control of powder blending and is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app