Add like
Add dislike
Add to saved papers

A Process Analytical Technology approach to near-infrared process control of pharmaceutical powder blending: Part II: Qualitative near-infrared models for prediction of blend homogeneity.

The successful implementation of near-infrared spectroscopy (NIRS) in process control of powder blending requires constructing an inclusive spectral database that reflects the anticipated voluntary or involuntary changes in processing conditions, thereby minimizing bias in prediction of blending behavior. In this study, experimental design was utilized as an efficient way of generating blend experiments conducted under varying processing conditions such as humidity, blender speed and component concentration. NIR spectral data, collected from different blending experiments, was used to build qualitative models for prediction of blend homogeneity. Two pattern recognition algorithms: Soft Independent Modeling of Class Analogies (SIMCA) and Principal Component Modified Bootstrap Error-adjusted Single-sample Technique (PC-MBEST) were evaluated for qualitative analysis of NIR blending data. Optimization of NIR models, for the two algorithms, was achieved by proper selection of spectral processing, and training set samples. The models developed were successful in predicting blend homogeneity of independent blend samples under different processing conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app