CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Lower extremity biomechanics during the landing of a stop-jump task.

BACKGROUND: Literature shows that landing with great impact forces may be a risk factor for knee injuries. The purpose of this study was to examine the relationships among selected lower extremity kinematics and kinetics during the landing of a stop-jump task.

METHODS: Landmark coordinates and ground reaction forces during a stop-jump task were collected. Lower extremity joint angles and resultants were reduced. Pearson correlation coefficients among selected lower extremity kinematics and kinetics were determined.

FINDINGS: The hip flexion angular velocity at the initial foot contact had significant correlation with peak posterior and vertical ground reaction forces (r = -0.63, P < 0.001, r = -0.48, P < 0.001) during the landing of the stop-jump task. The knee flexion angular velocity at the initial foot contact also had significant correlation with peak posterior and vertical ground reaction force (r = -0.49, P < 0.001, r = -0.06, P < 0.001) during the landing of the stop-jump task. Peak proximal tibia anterior shear force and peak knee extension moment during landing of the stop-jump task had significantly correlation with the corresponding posterior and vertical ground reaction forces (r > 0.51, P < 0.001).

INTERPRETATION: A large hip and knee flexion angles at the initial foot contact with the ground do not necessarily reduce the impact forces during the landing of the stop-jump task, but active hip and knee flexion motions do. Hip joint motion at the initial foot contact with the ground appears to be an important technical factor that affects anterior cruciate ligament loading during the landing of the stop-jump task.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app