JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Heterogeneous pulmonary blood flow in response to hypoxia: a risk factor for high altitude pulmonary edema?

High altitude pulmonary edema (HAPE) is a rapidly reversible hydrostatic edema that occurs in individuals who travel to high altitude. The difficulties associated with making physiologic measurements in humans who are ill or at high altitude, along with the idiosyncratic nature of the disease and lack of appropriate animal models, has meant that our understanding of the mechanism of HAPE is incomplete, despite considerable effort. Bronchoalveolar lavage studies at altitude in HAPE-susceptible subjects have shown that mechanical stress-related damage to the pulmonary blood gas barrier likely precedes the development of edema. Although HAPE-susceptible individuals have increased pulmonary arterial pressure in hypoxia, how this high pressure is transmitted to the capillaries has been uncertain. Using functional magnetic resonance imaging of pulmonary blood flow, we have been able to show that regional pulmonary blood flow in HAPE-susceptible subjects becomes more heterogeneous when they are exposed to normobaric hypoxia. This is not observed in individuals who have not had HAPE, providing novel data supporting earlier suggestions by Hultgren that uneven hypoxic pulmonary vasoconstriction is an important feature of those who develop HAPE. This brief review discusses how uneven hypoxic pulmonary vasoconstriction increases regional pulmonary capillary pressure leading to stress failure of pulmonary capillaries and HAPE. We hypothesize that, in addition to the well-documented increase in pulmonary vascular pressure in HAPE-susceptible individuals, increased perfusion heterogeneity in hypoxia results in lung regions that are vulnerable to increased mechanical stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app