JOURNAL ARTICLE

Acute effect of fatty acids on metabolism and mitochondrial coupling in skeletal muscle

Sandro M Hirabara, Leonardo R Silveira, Luciane C Alberici, Carol V G Leandro, Rafael H Lambertucci, Gisele C Polimeno, Maria F Cury Boaventura, Joaquim Procopio, Anibal E Vercesi, Rui Curi
Biochimica et Biophysica Acta 2006, 1757 (1): 57-66
16375848
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O(2) consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16375848
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"