Add like
Add dislike
Add to saved papers

Removing critical errors for DFT applications to transition-metal nanoclusters: correct ground-state structures of Ru clusters.

As ruthenium plays an important role in heterogeneous catalysis, understanding the structural and electronic properties of Ru clusters is crucial to advancement of technology. Because of its efficiency, density functional theory (DFT) calculations are often utilized in nanoscience, but careful validation is necessary. Recently, small, nonmetallic Ru(n) clusters were reported by Zhang et al. [J. Phys. Chem. B 2004, 108, 2140] to form unusual square and cubic ground-state structures within DFT by treating the exchange-correlation (XC) functional at the level of general-gradient-corrected approximation (GGA). For such clusters, we show that the calculated, energetically preferred structures are sensitive to which XC functional is used and whether relativistic effects are included. We find that a hybrid XC functional with partially exact exchange, such as PBE0, corrects the Ru2 magnetic moment, bond length, and dissociation energy in agreement with experiment and high-level quantum chemistry calculations and changes the Ru4 ground-state structure to a tetrahedron, instead of a square. The change in structural preference is explained by the corrections to the electronic structure of a Ru atom, where the relative position of majority spin s level is shifted with respect to e(g) levels. We also find that standard nonrelativistic DFT-GGA gives similar results to relativistic DFT-PBE0, i.e., relative shifting of s level, but not for the right reasons. Our results again stress the need to validate an XC functional before application to transition-metal nanoclusters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app