JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fabrication of poly(methyl methacrylate) capillary electrophoresis microchips by in situ surface polymerization.

Lab on a Chip 2006 January
A novel method based on in situ surface polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) capillary electrophoresis (CE) microchips. MMA containing both thermal and ultraviolet (UV) initiators was allowed to prepolymerize in a water bath to form a fast curing molding solution that was subsequently sandwiched between a nickel template and a PMMA plate. The images of the raised microchannels on the nickel template were precisely replicated into the synthesized PMMA substrates during the UV-initiated polymerization of the molding solution within 30 min under ambient temperature. The attractive performances of the novel PMMA microchips have been demonstrated in connection with amperometric detection for the separation and detection of several model analytes. The new approach significantly simplifies the process for fabricating PMMA devices and could be applied to other materials that undergo light-initiated polymerization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app