JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Indispensable role of mitochondrial UCP1 for antiobesity effect of beta3-adrenergic stimulation.

Mitochondrial uncoupling protein-1 (UCP1) has been thought to be a key molecule for thermogenesis during cold exposure and spontaneous hyperphagia and thereby in the autonomic regulation of energy expenditure and adiposity. However, UCP1 knockout (KO) mice were reported to be cold intolerant but unexpectedly did not get obese even after hyperphagia, implying that UCP1 may not be involved in the regulation of adiposity. Treatment of obese animals with beta3-adrenergic agonists is known to increase lipid mobilization, induce UCP1, and, finally, reduce body fat content. To obtain direct evidence for the role of UCP1 in the anti-obesity effect of beta3-adrenergic stimulation, in the present study, UCP1-KO and wild-type (WT) mice were fed on cafeteria diets for 8 wk and then given a beta3-adrenergic agonist, CL-316,243 (CL), or saline for 2 wk. A single injection of CL increased whole body oxygen consumption and brown fat temperature in WT mice but not in KO mice, and it elicited almost the same plasma free fatty acid response in WT and KO mice. WT and KO mice increased similarly their body and white fat pad weights on cafeteria diets compared with those on laboratory chow. Daily treatment with CL resulted in a marked reduction of white fat pad weight and the size of adipocytes in WT mice, but not in KO mice. Compared with WT mice, KO mice expressed increased levels of UCP2 in brown fat but decreased levels in white fat and comparable levels of UCP3. It was concluded that the anti-obesity effect of beta3-adrenergic stimulation is largely attributable to UCP1, but less to UCP2 and UCP3, and thereby to UCP1-dependent degradation of fatty acids released from white adipose tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app