JOURNAL ARTICLE

CAP and arousals are involved in the homeostatic and ultradian sleep processes

Mario Giovanni Terzano, Liborio Parrino, Arianna Smerieri, Fabrizio Carli, Lino Nobili, Stefania Donadio, Franco Ferrillo
Journal of Sleep Research 2005, 14 (4): 359-68
16364136
There is growing evidence that cyclic alternating pattern (CAP) and arousals are woven into the basic mechanisms of sleep regulation. In the present study, the overnight sleep cycles (SC) of 20 normal subjects were analyzed according to their stage composition, CAP rate, phase A subtypes and arousals. Individual SC were then divided into 10 normalized temporal epochs. CAP parameters and arousals were measured in each epoch and averaged in relation to the SC order. Subtypes A2 and A3 of CAP in non-rapid eye movement (NREM) sleep, and arousals, both in REM and NREM sleep when not coincident with a A2 or A3 phases, were lumped together as fast electroencephalographic (EEG) activities (FA). Subtypes A1 of CAP, characterized by slow EEG activities (SA), were analyzed separately. The time distribution of SA and FA was compared to the mathematical model of normal sleep structure including functions representing the homeostatic process S, the circadian process C, the ultradian process generating NREM/REM cycles and the slow wave activity (SWA) resulting from the interaction between homeostatic and ultradian processes. The relationship between SA and FA and the sleep-model components was evaluated by multiple regression analysis in which SA and FA were considered as dependent variables while the covariates were the process S, process C, SWA, REM-on and REM-off activities and their squared values. Regression was highly significant (P < 0.0001) for both SA and FA. SA were prevalent in the first three SC, and exhibited single or multiple peaks immediately before and in the final part of deep sleep (stages 3 + 4). The peaks of FA were delayed and prevailed during the pre-REM periods of light sleep (stages 1 + 2) and during REM sleep. SA showed an exponential decline across the successive SC, according to the homeostatic process. In contrast, the distribution of FA was not influenced by the order of SC, with periodic peaks of FA occurring before the onset of REM sleep, in accordance with the REM-on switch. The dynamics of CAP and arousals during sleep can be viewed as an intermediate level between cellular activities and macroscale EEG phenomena as they reflect the decay of the homeostatic process and the interaction between REM-off and REM-on mechanisms while are slightly influenced by circadian rhythm.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16364136
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"