JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adenovirus E1A reverses the resistance of normal primary human lung fibroblast cells to TRAIL through DR5 upregulation and caspase 8-dependent pathway.

Expression of the adenovirus serotype 5 (Ad5) E1A enhances tumor cells to apoptosis by TNF-alpha, Fas-ligand and TNF-related apoptosis-inducing ligand (TRAIL). In this study, we found that E1A expression reversed the resistance of normal primary human lung fibroblast cells (P-HLF) to TRAIL-induced apoptosis. Furthermore, TRAIL dramatically induced apoptosis of P-HLF cells that expressed E1A following either infection with Ad-E1A or transfection with pcDNA3-E1A. Further results demonstrated that E1A specifically upregulated DR5 levels but had nearly no effect on the levels of DR4. E1A dramatically upregulated the exogenous TRAIL, and then increased a substantial amount of TRAIL on the surface of P-HLF cells treated with the expression vectors, both Ad-TRAIL and pIRES-EGFP-TRAIL. The dominant negative FADD mutation (FADD-DN) results revealed that the apoptosis in Ad-E1A and Ad-TRAIL coinfected P-HLF cells was completely blocked following inhibition of the death receptors-associated apoptosis-inducing molecules FADD. Moreover, the caspase 8 inhibitor (Z-IETD-FMK) could efficiently block caspase 8 activation and resulted in inhibition of caspase 3 activation and cleavage. However, The caspase 9 specific inhibitor (Z-LEHD-FMK) could not counteract the synergistic effect of TRAIL-induced apoptosis in combination with E1A, and caspase 3 activation and cleavage were not inhibited by Z-LEHD-FMK. Thus, our results suggest that adenovirus E1A sensitizes P-HLF cells to TRAIL-induced apoptosis involving DR5 upregulation and the caspase 8-dependent pathway. These findings provide the first direct evidence for molecular mechanisms of adenovirus E1A gene products to sensitize normal cells to TRAIL-mediated apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app