Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells.

Cancer Research 2005 December 16
Despite considerable efforts to improve early detection and advances in chemotherapy, metastatic relapses remain a major challenge in the management of ovarian cancer. The endothelin A receptor (ET(A)R)/endothelin-1 (ET-1) axis has been shown to have a significant role in ovarian carcinoma by promoting tumorigenesis. Here we show that the ET-1/ET(A)R autocrine pathway drives epithelial-to-mesenchymal transition (EMT) in ovarian tumor cells by inducing a fibroblastoid and invasive phenotype, down-regulation of E-cadherin, increased levels of beta-catenin, Snail, and other mesenchymal markers, and suppression of E-cadherin promoter activity. Activation of ET(A)R by ET-1 triggers an integrin-linked kinase (ILK)-mediated signaling pathway leading to glycogen synthase kinase-3beta (GSK-3beta) inhibition, Snail and beta-catenin stabilization, and regulation of transcriptional programs that control EMT. Transfection of dominant negative ILK or exposure to an ILK inhibitor suppresses the ET-1-induced phosphorylation of GSK-3beta as well as Snail and beta-catenin protein stability, activity, and invasiveness, indicating that ET-1/ET(A)R-induced EMT-promoting effects depend on ILK. ET(A)R blockade by specific antagonists or reduction by ET(A)R RNA interference reverses EMT and cell invasion by inhibiting autocrine signaling pathways. In ovarian carcinoma xenografts, ABT-627, a specific ET(A)R antagonist, suppresses EMT determinants and tumor growth. In human ovarian cancers, ET(A)R expression is associated with E-cadherin down-regulation, N-cadherin expression, and tumor grade. Collectively, these findings provide evidence of a critical role for the ET-1/ET(A)R axis during distinct steps of ovarian carcinoma progression and identify novel targets of therapeutic intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app