High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions

Enrico Mastrobattista, Valerie Taly, Estelle Chanudet, Patrick Treacy, Bernard T Kelly, Andrew D Griffiths
Chemistry & Biology 2005, 12 (12): 1291-300
We describe a completely in vitro high-throughput screening system for directed evolution of enzymes based on in vitro compartmentalization (IVC). Single genes are transcribed and translated inside the aqueous droplets of a water-in-oil emulsion. Enzyme activity generates a fluorescent product and, after conversion into a water-in-oil-in-water double emulsion, fluorescent droplets are sorted using a fluorescence-activated cell sorter (FACS). Earlier in vivo studies have demonstrated that Ebg, a protein of unknown function, can evolve to allow Escherichia coli lacking the lacZ beta-galactosidase gene to grow on lactose. Here we demonstrate that we can evolve Ebg into an enzyme with significant beta-galactosidase activity in vitro. Only two specific mutations were ever seen to provide this improvement in Ebg beta-galactosidase activity in vivo. In contrast, nearly all the improved beta-galactosidases selected in vitro resulted from different mutations.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"