Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phosphodiesterase-4 influences the PKA phosphorylation status and membrane translocation of G-protein receptor kinase 2 (GRK2) in HEK-293beta2 cells and cardiac myocytes.

Biochemical Journal 2006 March 2
Membrane-recruitment of GRK2 (G-protein receptor kinase 2) provides a fundamental step in the desensitization process controlling GPCRs (G-protein-coupled receptors), such as the beta2AR (beta2-adrenergic receptor). In the present paper, we show that challenge of HEK-293beta2 [human embryonic kidney cells stably overexpressing the FLAG-tagged beta2AR-GFP (green fluorescent protein)] cells with the beta-adrenoceptor agonist, isoprenaline, causes GRK2 to become phosphorylated by PKA (cAMP-dependent protein kinase). This action is facilitated when cAMP-specific PDE4 (phosphodiesterase-4) activity is selectively inactivated, either chemically with rolipram or by siRNA (small interfering RNA)-mediated knockdown of PDE4B and PDE4D. PDE4-selective inhibition by rolipram facilitates the isoprenaline-induced membrane translocation of GRK2, phosphorylation of the beta2AR by GRK2, membrane translocation of beta-arrestin and internalization of beta2ARs. PDE4-selective inhibition also enhances the ability of isoprenaline to trigger the PKA phosphorylation of GRK2 in cardiac myocytes. In the absence of isoprenaline, rolipram-induced inhibition of PDE4 activity in HEK-293beta2 cells acts to stimulate PKA phosphorylation of GRK2, with consequential effects on GRK2 membrane recruitment and GRK2-mediated phosphorylation of the beta2AR. We propose that a key role for PDE4 enzymes is: (i) to gate the action of PKA on GRK2, influencing the rate of GRK2 phosphorylation of the beta2AR and consequential recruitment of beta-arrestin subsequent to beta-adrenoceptor agonist challenge, and (ii) to protect GRK2 from inappropriate membrane recruitment in unstimulated cells through its phosphorylation by PKA in response to fluctuations in basal levels of cAMP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app