CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Familial complex 3q;10q rearrangement unraveled by subtelomeric FISH analysis.

In recent years, subtelomeric rearrangements have been identified as a major cause of multiple congenital anomalies/mental retardation syndromes. Currently, more than 2,500 individuals with mental retardation have been tested and reported in whom subtelomeric rearrangements were detected ranging from 2% to 29%. Therefore, subtelomeric FISH analysis is indicated as a second tier test after high-resolution G-banding analysis in patients with otherwise unexplained developmental delay/mental retardation and/or multiple congenital anomalies. We describe a patient and her three maternal female cousins, all showing an undiagnosed MCA/MR syndrome, associated with the same complex subtelomeric rearrangement. Subtelomeric FISH testing performed between 3(1/2) and 18 years after the initial karyotype showed, in all four patients, distal trisomy 3q and distal monosomy 10q as follows: 46,XX,ish der(10)t(3;10)(q29;q26.3)mat(D10S2488+,D10S2490-, D3S1272+,D10Z1+). Parental subtelomeric FISH analysis showed that the proposita's mother and three of four brothers and one of two sisters had a cryptic balanced 3:10 telomere translocation. The three brothers with the balanced translocation were father to one each of the three proband's cousins. All four affected girls showed a similar phenotype with pre/postnatal growth retardation, microcephaly, severe developmental delay/mental retardation, poor/absent speech, and a distinct pattern of malformation. On examination there were coarsening of facial features with low fronto-temporal hairline; thick eyebrows; bilateral epicanthal folds; hypertelorism; prominent nose with squared nasal root and narrow alar base; low-set posteriorly rotated large ears with a prominent anthelix; high arched palate; prominent chin; hands/feet brachydactyly; bilateral squint; hypotonia; and muscle hypotrophy. A slow overall improvement was seen in all patients over time. To our knowledge, this complex subtelomeric rearrangement in our patients has never been reported so far. Monosomy 10q has recently been described either isolated or as part of a complex rearrangement involving telomeres other than the 3q. Trisomy 3q29 has not yet been reported, but our patients resembled cases with 3q26 trisomy suggesting that the critical region of duplication for this phenotype is in 3q29.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app