JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Modulation of trophoblast stem cell and giant cell phenotypes: analyses using the Rcho-1 cell model.

Trophoblast giant cells are located at the maternal-embryonic interface and have fundamental roles in the invasive and endocrine phenotypes of the rodent placenta. In this report, we describe the experimental modulation of trophoblast stem cell and trophoblast giant cell phenotypes using the Rcho-1 trophoblast cell model. Rcho-1 trophoblast cells can be manipulated to proliferate or differentiate into trophoblast giant cells. Differentiated Rcho-1 trophoblast cells are invasive and possess an endocrine phenotype, including the production of members of the prolactin (PRL) family. Dimethyl sulfoxide (DMSO), a known differentiation-inducing agent, was found to possess profound effects on the in vitro development of trophoblast cells. Exposure to DMSO, at non-toxic concentrations, inhibited trophoblast giant cell differentiation in a dose-dependent manner. These concentrations of DMSO did not significantly affect trophoblast cell proliferation or survival. Trophoblast cells exposed to DMSO exhibited an altered morphology; they were clustered in tightly packed colonies. Trophoblast giant cell formation was disrupted, as was the expression of members of the PRL gene family. The effects of DMSO were reversible. Removal of DMSO resulted in the formation of trophoblast giant cells and expression of the PRL gene family. The phenotype of the DMSO-treated cells was further determined by examining the expression of a battery of genes characteristic of trophoblast stem cells and differentiated trophoblast cell lineages. DMSO treatment had a striking stimulatory effect on eomesodermin expression and a reciprocal inhibitory effect on Hand1 expression. In summary, DMSO reversibly inhibits trophoblast differentiation and induces a quiescent state, which mimics some but not all aspects of the trophoblast stem cell phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app