JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
REVIEW
Add like
Add dislike
Add to saved papers

Ethanol-induced liver injury: potential roles for egr-1.

Chronic ethanol-induced liver injury follows a typical progression from its earliest stage of steatosis to more advanced injury, characterized by the development of inflammation, hepatocyte necrosis/apoptosis, fibrosis and finally cirrhosis. Kupffer cells, the resident macrophage in the liver, play a critical role in the progression of liver injury. Increased exposure of Kupffer cells to lipopolysaccharide (LPS) during chronic ethanol exposure leads to the production of a number of inflammatory mediators, including tumor necrosis factor alpha (TNF-alpha). Recent evidence indicates that in addition to increased exposure to LPS, Kupffer cells also develop an enhanced sensitivity to LPS after chronic ethanol feeding. We have recently identified early growth response-1 (Egr-1), an immediate-early gene transcription factor, as an important contributor to increased LPS-stimulated TNF-alpha secretion by Kupffer cells after chronic ethanol exposure. In other models of tissue injury, such as ischemia-reperfusion in the lung, Egr-1 acts as a coordinator of the complex response to stress. Here we review the literature regarding the role of EGR-1 in regulation of a number of genes implicated in each of the stages of chronic ethanol-induced liver injury. In addition to the critical role of Egr-1 in generating maximal LPS-stimulated TNF-alpha expression, Egr-1 also controls the expression of a number of inflammatory mediators, including intercellular adhesion molecule (ICAM)-1, monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-2, as well as genes contributing to fibrosis, such as transforming growth factor (TFG)-beta1, platelet-derived growth factor PDGF-A chain and fibroblast growth factor (FGF). Understanding the contribution of Egr-1 to the expression of genes involved in the development of chronic ethanol-induced liver injury may lead to the development of improved therapies designed to prevent and/or reverse alcohol-induced liver injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app