JOURNAL ARTICLE
REVIEW

Systemic oxygen transport in rats artificially selected for running endurance

Norberto C Gonzalez, Richard A Howlett, Kyle K Henderson, Lauren G Koch, Steve L Britton, Harrieth E Wagner, Fabrice Favret, Peter D Wagner
Respiratory Physiology & Neurobiology 2006 April 28, 151 (2-3): 141-50
16344008
The relative contribution of genetic and environmental influences to individual exercise capacity is difficult to determine. Accordingly, animal models in which these influences are carefully controlled are highly useful to understand the determinants of intrinsic exercise capacity. Studies of systemic O(2) transport during maximal treadmill exercise in two diverging lines of rats artificially selected for endurance capacity showed that, at generation 7, whole body maximal O(2) uptake ((.)V(O(2)(max)) was 12% higher in high capacity (HCR) than in low capacity runners (LCR) during normoxic exercise. The difference in (.)V(O(2)(max) between HCR and LCR was larger during hypoxic exercise. Analysis of the linked O(2) conductances of the O(2) transport system showed that the higher (.)V(O(2)(max) was not due to a higher ventilatory response, a more effective pulmonary gas exchange, or an increased rate of O(2) delivery to the tissue by blood. The main reason for the higher (.)V(O(2)(max) of HCR was an increased tissue O(2) extraction, due largely to a higher tissue diffusive O(2) conductance. The enhanced tissue O(2) diffusing capacity was paralleled by an increased capillary density of a representative locomotory skeletal muscle, the gastrocnemius, in HCR. Activities of skeletal muscle oxidative enzymes citrate synthase and beta-HAD were also higher in HCR than LCR. Thus, the functional characteristics observed during exercise are consistent with the structural and biochemical changes observed in skeletal muscle that imply an enhanced capacity for muscle O(2) uptake and utilization in HCR. The results indicate that the improved (.)V(O(2)(max) is solely due to enhanced muscle O(2) extraction and utilization. However, the question arises as to whether it is possible to maintain a continually expanding capacity for O(2) extraction at the tissue level with successive generations, without a parallel improvement in the capacity to deliver O(2) to the exercising muscles.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16344008
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"