COMPARATIVE STUDY
JOURNAL ARTICLE

Safe cooling limits from exercise-induced hyperthermia

C I Proulx, M B Ducharme, G P Kenny
European Journal of Applied Physiology 2006, 96 (4): 434-45
16341523
We evaluated the cooling rate of hyperthermic subjects, as measured by three estimates of deep core temperatures (esophageal, rectal and aural canal temperatures), during immersion in a range of water temperatures. The objective of the study was to compare the three indices of core temperature and define safe cooling limits when using rectal temperature to avoid the development of hypothermia. On 4 separate days, seven subjects (four males, three females) exercised for 45.4+/-4.1 min at 65% V(O2)max at an ambient temperature of 39 degrees C, RH: 36.5%, until rectal temperature (T (re)) increased to 40.0 degrees C (39.5 degrees C for two subjects). Following exercise, the subjects were immersed in a circulated water bath controlled at 2, 8, 14 and 20 degrees C until T (re) returned to 37.5 degrees C. When T (re) reached normothermia during the cooling period (37.5+/-0.05 degrees C), both esophageal (T (es)) (35.6+/-1.3 degrees C) and aural canal (T (ac)) (35.9+/-0.9 degrees C) temperatures were approaching or reaching hypothermia, particularly during immersion in 2 degrees C water (T (es)=34.5+/-1.2 degrees C). On the basis of the heat loss data, the heat gained during the exercise was fully eliminated after 5.4+/-1.5, 7.9+/-2.9, 10.4+/-3.8 and 13.1+/-2.8 min of immersion in 2, 8, 14 and 20 degrees C water, respectively, with the coldest water showing a significantly faster cooling rate. During the immersion in 2 degrees C water, a decrease of only 1.5 degrees C in T (re) resulted in the elimination of 100% of the heat gained during exercise without causing hypothermia. This study would therefore support cooling the core temperature of hyperthermic subjects to a rectal temperature between 37.8 degrees C (during immersion in water >10 degrees C) and 38.6 degrees C (during immersion in water <10 degrees C) to eliminate the heat gained during exercise without causing hypothermia.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16341523
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"