COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Safe cooling limits from exercise-induced hyperthermia.

We evaluated the cooling rate of hyperthermic subjects, as measured by three estimates of deep core temperatures (esophageal, rectal and aural canal temperatures), during immersion in a range of water temperatures. The objective of the study was to compare the three indices of core temperature and define safe cooling limits when using rectal temperature to avoid the development of hypothermia. On 4 separate days, seven subjects (four males, three females) exercised for 45.4+/-4.1 min at 65% V(O2)max at an ambient temperature of 39 degrees C, RH: 36.5%, until rectal temperature (T (re)) increased to 40.0 degrees C (39.5 degrees C for two subjects). Following exercise, the subjects were immersed in a circulated water bath controlled at 2, 8, 14 and 20 degrees C until T (re) returned to 37.5 degrees C. When T (re) reached normothermia during the cooling period (37.5+/-0.05 degrees C), both esophageal (T (es)) (35.6+/-1.3 degrees C) and aural canal (T (ac)) (35.9+/-0.9 degrees C) temperatures were approaching or reaching hypothermia, particularly during immersion in 2 degrees C water (T (es)=34.5+/-1.2 degrees C). On the basis of the heat loss data, the heat gained during the exercise was fully eliminated after 5.4+/-1.5, 7.9+/-2.9, 10.4+/-3.8 and 13.1+/-2.8 min of immersion in 2, 8, 14 and 20 degrees C water, respectively, with the coldest water showing a significantly faster cooling rate. During the immersion in 2 degrees C water, a decrease of only 1.5 degrees C in T (re) resulted in the elimination of 100% of the heat gained during exercise without causing hypothermia. This study would therefore support cooling the core temperature of hyperthermic subjects to a rectal temperature between 37.8 degrees C (during immersion in water >10 degrees C) and 38.6 degrees C (during immersion in water <10 degrees C) to eliminate the heat gained during exercise without causing hypothermia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app