Clinical Trial
Comparative Study
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle.

This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app