JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Extracellular signal-regulated kinases and AP-1 mediate the up-regulation of vascular endothelial growth factor by PDGF in human vascular smooth muscle cells.

Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) have been shown to communicate with each other via cytokine signaling during neovascularization. In this study, we investigated the effect of platelet-derived growth factor (PDGF), a cytokine released from tumors and ECs, on vascular endothelial growth factor (VEGF) expression in human VSMCs and underlying signal transduction pathways. PDGF induced VEGF expression in a time- and concentration-dependent manner. PDGF induced the activation of extra-cellular signal-regulated kinase-1/2 (ERK-1/2), but not the activation of c-jun amino terminal kinase (JNK) and P38 mitogen-activated protein kinase (MAPK). Specific inhibitor of mitogen-activated protein kinase kinase (MEK)-1 was found to suppress VEGF expression and promoter activity. The expression of vectors encoding a mutated-type MEK-1 decreased the VEGF promoter activity. Electrophoretic mobility shift assay revealed that PDGF dose-dependently increased the DNA binding activity of AP-1. Transient transfection studies using an AP-1 decoy oligonucleotide confirmed that the activation of AP-1 is involved in PDGF-induced VEGF upregulation. Conditioned media from the human VSMCs pretreated with PDGF could remarkably stimulate the in vitro growth of human umbilical vein endothelial cells and this effect was partially abrogated by VEGF neutralizing antibodies. The above results suggest that ERK-1/2 and AP-1 signaling pathways are involved in the PDGF-induced VEGF expression in human VSMCs and that these paracrine signaling pathways induce endothelial cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app