Successful declarative memory formation is associated with ongoing activity during encoding in a distributed neocortical network related to working memory: a magnetoencephalography study

A Takashima, O Jensen, R Oostenveld, E Maris, M van de Coevering, G Fernández
Neuroscience 2006 April 28, 139 (1): 291-7
The aim of the present study was to investigate the spatio-temporal characteristics of the neural correlates of declarative memory formation as assessed by the subsequent memory effect, i.e. the difference in encoding activity between subsequently remembered and subsequently forgotten items. Different operations could account for these effects. In particular, it has been proposed that successful memory formation depends on the organization of the information at the time of encoding, an operation accomplished by the working memory system. Consequently, functional magnetic resonance imaging studies have already shown that the very same regions that are involved in certain working memory processes are also involved in declarative memory formation. Here, we used magnetoencephalography to investigate whether the subsequent memory effects in these regions are present throughout picture stimulus presentation, postulating ongoing working memory operations as an effective factor. The results showed that subsequent memory effects began to appear after about 300 ms post stimulus onset over bilateral temporal areas and left parietal regions and were sustained throughout the recording epoch (1000 ms). Roughly parallel to these effects, we identified a left frontal subsequent memory effect, which, however, was less sustained than the other effects. In addition, we revealed a late subsequent memory effect over the right occipital region, which has not been described previously in the event-related potential literature. These sustained subsequent memory effects are suggestive of working memory processes that may enable deep semantic and perceptual processing. Additionally, contextually constrained visual perception after top-down modulation may account for a more efficient encoding of the complex scene.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"