JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema.

Inflammation, protease/anti-protease imbalance and oxidative stress play important roles in the pathogenesis of emphysema. Nrf2 counteracts oxidative tissue damage and inflammation through transcriptional activation via the anti-oxidant responsive element (ARE). To clarify the protective role of Nrf2 in the development of emphysema, the susceptibility of Nrf2-knockout mice to cigarette smoke (CS)-induced emphysema was examined. In Nrf2-knockout mice, emphysema was first observed at 8 weeks and exacerbated by 16 weeks following CS-exposure, whereas no pathological abnormalities were observed in wild-type mice. Neutrophilic lung inflammation and permeability lung damage were significantly enhanced in Nrf2-knockout mice 8 weeks after CS-exposure. Importantly, neutrophil elastase activity in bronchoalveolar lavage fluids was markedly higher in Nrf2-knockout mice preceding the pronounced neutrophil accumulation. The expression of secretory leukoprotease inhibitor, a potent inhibitor of neutrophil elastase, was inducible in wild-type, but not in Nrf2-knockout mice. This protease/anti-protease imbalance, together with the lack of inducible expression of ARE-regulated anti-oxidant/anti-inflammatory genes, may explain the predisposition of Nrf2-knockout mice to neutrophilic inflammation. Indeed, specific activators of Nrf2 induced the expression of the SLPI gene in macrophages. These results indicate that Nrf2 protects against the development of emphysema by regulating not only the oxidant/anti-oxidant balance, but also inflammation and the protease/anti-protease balance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app