In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The vitamin D receptor represses transcription of the pituitary transcription factor Pit-1 gene without involvement of the retinoid X receptor.

Pituitary transcription factor-1 (Pit-1) plays a key role in cell differentiation during organogenesis of the anterior pituitary, and as a transcriptional activator for the pituitary GH and prolactin genes. However, Pit-1 is also expressed in nonpituitary cell types and tissues. In breast tumors, Pit-1 mRNA and protein levels are increased with respect to normal breast, and in MCF-7 human breast adenocarcinoma cells, Pit-1 increases GH secretion and cell proliferation. We report here that 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] administration to MCF-7 cells induces a significant decrease in Pit-1 mRNA and protein levels. By deletion analyses, we mapped a region (located between -147 and -171 bp from the transcription start site of the Pit-1 gene) that is sufficient for the repressive response to 1,25-(OH)2D3. Gel mobility shift and chromatin immunoprecipitation assays confirmed the direct interaction between the vitamin D receptor (VDR) as homodimer (without the retinoid X receptor), and the Pit-1 promoter, supporting the view that Pit-1 is a direct transcriptional target of VDR. Our data also indicate that recruitment of histone deacetylase 1 is involved in this repressive effect. This ligand-dependent Pit-1 gene inhibition by VDR in the absence of the retinoid X receptor seems to indicate a new mechanism of transcriptional repression by 1,25-(OH)2D3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app