OPEN IN READ APP
COMPARATIVE STUDY
JOURNAL ARTICLE

Temporal and parental-specific expression of imprinted genes in a newly derived Chinese human embryonic stem cell line and embryoid bodies

Bo Wen Sun, A Cong Yang, Yun Feng, Yi Juan Sun, Yu fei Zhu, Yi Zhang, Hua Jiang, Chun Liang Li, Fu Rong Gao, Zhi Hong Zhang, Wei Cheng Wang, Xiang Yin Kong, Gang Jin, Shi Jun Fu, Ying Jin
Human Molecular Genetics 2006 January 1, 15 (1): 65-75
16319131
Although the study of imprinted genes in human development is very important, little is known about their expression and regulation in the early differentiation of human tissues due to lack of an appropriate model. In this study, a Chinese human embryonic stem (hES) cell line, SHhES1, was derived and fully characterized. Expression profiles of human imprinted genes were determined by Affymetrix Oligo micro-array in undifferentiated SHhES1 cells and SHhES1-derived embryoid bodies (EBs) at day 3, 8, 13 and 18. Thirty-two known human imprinted genes were detected in undifferentiated ES cells. Significantly, differential expression was found in nine genes at different stages of EB formation. Expression profile changes were confirmed by quantitative real-time reverse transcriptase-polymerase chain reaction in SHhES1 cells as well as in another independently derived hES cell line, HUES-7. In addition, the monoallelic expressions of four imprinted genes were examined in three different passages of undifferentiated ES cells and EBs of both hES cell lines. The monoallelic expressions of imprinted genes, H19, PEG10, NDNL1 and KCNQ1 were maintained in both undifferentiated hES cells and derived EBs. More importantly, with the availability of maternal peripheral blood lymphocyte sample, we demonstrated that the maternal expression of KCNQ1 and the paternal expression of NDNL1 and PEG10 were maintained in SHhES1 cells. These data provide the first demonstration that the parental-specific expression of imprinted genes is stable in EBs after extensive differentiation, also indicating that in vitro fertilization protocol does not disrupt the parental monoallelic expression of the imprinted genes examined.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
16319131
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"