Add like
Add dislike
Add to saved papers

Intervalence transitions in the mixed-valence monocations of bis(triarylamines) linked with vinylene and phenylene-vinylene bridges.

(E)-4,4'-Bis[bis(4-methoxyphenyl)amino]stilbene, 1, (E,E)-1,4-bis[4-[bis(4-methoxyphenyl)amino]styryl]benzene, 2, and two longer homologues, (E,E,E)-4,4'-bis[4-[bis(4-methoxyphenyl)amino]styryl]stilbene, 3, and (E,E,E,E)-1,4-bis(4-[4-[bis(4-methoxyphenyl)amino]styryl]styryl)benzene, 4, have been oxidized to their mono- and dications using tris(4-bromophenyl)aminium hexachloroantimonate. The intervalence charge-transfer (IVCT) band of 1(+) is narrow and asymmetric and exhibits only weak solvatochromism. Analysis of this band indicates that 1(+) is a class-III or class-II/III borderline mixed-valence species. In contrast, a broad, strongly solvatochromic IVCT band is observed for 2(+), indicating that this species is a class-II mixed-valence species. The assignment of 1(+ ) and 2(+) as symmetric class-III and unsymmetric class-II species, respectively, is also supported by AM1 calculations. Hush analysis of the IVCT bands of both 1(+) and 2(+) gives larger electronic couplings, V, than for their analogues in which the double bonds are replaced with triple bonds. The diabatic electron-transfer distance, R, in 1(+) can be estimated by comparison of the V estimated by Hush analysis and from the IVCT maximum; it is considerably less than the geometric N-N separation, a result supported by quantum-chemical estimates of R for 1(+)-4(+). In 3(+) and 4(+), the IVCT is largely obscured by an intense absorption similar to a band seen in the corresponding dications and to that observed in the monocation of a model compound, (E,E,E)-1-[bis(4-methoxyphenyl)amino]-4-[4-[4-(4-tert-butylstyryl)styryl]styryl]benzene, 5, containing only one nitrogen redox center; we attribute this band to a bridge-to-N(+) transition. The corresponding dications 1(2+)-4(2+) show a complementary trend in the coupling between redox centers: the shortest species is diamagnetic, while the dication with the longest bridge behaves as two essentially noninteracting radical centers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app